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1. INTRODUCTION

A projection of a Banach space X onto a subspace V is a bounded linear
map P: X -----++ V such that p 2 = P. (The arrow with two heads denotes a
surjective map.) For many applications, a projection with nearly minimal
norm is sought. The greatest lower bound for IIPII is the relative projection
constant of V in X:

A(V, X) = inf{IIPII: P E .:;,I'/(X, V), P(X) = V, p 2 = Pl.

The absolute projection constant of a Banach space Y is defined by

A(Y) = SUp{A(Y, Z): Z:=J Yr.

These numbers may be infinite.
Our interest here is in the projection constants of subspaces of tensor

product spaces. For example, if G c X and HeY (all Banach spaces), how
is A(G ® H, X@ Y) related to A(G, X) and A(H, Y)? This problem does not
become properly posed until the topology of X @ Y has been specified. It is
convenient to assume that a reasonable norm a has been defined on the
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algebraic tensor product X 0 Y. This term means that In addition to the
usual axioms of a norm, we require

I:(t) <a(t) <1'(1),

al(A 0 B) tl< IIA IIIIBII a(t),

tE X® Y

A E f (X, X I ), B E ./ (Y, Y I ).

(I)

(2 )

In Eq. (I ), c; denotes the injective tensor-product norm, also termed the "Ieast
cross-norm whose associate is also a cross norm" 1131. (In Schatten"s
monograph E is denoted by A, but here we wish to use ;. for projection
constants.) The norm y is the projective tensor-product norm, or the
"greatest cross-norm."

In the nomenclature of Diestel and Uhl 171. (j is a reasonable cross-norm
with the additional property (2). Our terminology agrees with that of Gilbert
and Leih 181 except that we do not insist that a be defined for all pairs of
Banach spaces X, Y.

The completion of X @ Y with the norm a is denoted by X Y. If G c X
and HeY. we use the notation G @" H to denote the closure of G H in
X 0" Y. This may differ from G @" H in cases where a is of "general
character" and therefore has a meaning for any pair of normed spaces. See
17, p. 2311 and 113, p. 391·

Our main result is an extension of a recent theorem of Jameson and
Pinkus 110 I. They proved that if Sand T are compact Hausdorff spaces.
each containing infinitely many points, then the relative projection constant
of C(S) + C(T) as a subspace of C(S X T) is 3. Our result (Theorem 8)

states that under the same hypotheses. and with G and H finite-dimensional
subspaces containing the constant functions. the subspace

G C(T) + C(S) H

has relative projection constant at least 3. Our lower bound is sharp when
A(G, C(S)) = A(H, C(T)) = L as occurs in the situation considered by
Jameson and Pinkus.

Another of our results, Theorem 1, gives upper and lower bounds on the
relative projection constant of G @" H as a subspace of X Y. This
theorem is accompanied by various examples which indicate that the upper
and lower bounds can be attained.

2.

THEOREM 1. Consider four Banach spaces, G c X, HeY. Let a be a
reasonable norm on X 0 Y. The following inequality is valid for relatiue
projection constants:

maxjA(G, X), A(H, Y)f <),(G@" H, X@" Y) ~ A(G, X)· A(H. Y).
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Proof In order to prove the inequality on the right, let P and Q be
projections of X onto G and Y onto H, respectively. Then P ®" Q projects
X ®" Y onto G ®" H and has norm IIPII . II QII. Hence

By taking an infimum on P and Q we obtain the desired inequality.
In order to prove the inequality on the left, let P be a projection of X ®" Y

onto G ®" H. Since the case H = 0 is trivial, we assume H *' 0 and select
h E H with II h II = 1. Select <p E y* such that II <p II = 1 and <p(h) = 1. Define
iP: X ®" Y -> X by putting at first

iP(x ® y) = <p(y) . x (xEX,y E Y)

and then extending iP by linearity and continuity. The continuous extension is
possible because

In this inequality, f: denotes the smallest reasonable norm (A in Schatten's
notation). Hence f: ~ a. Also L x j 0 Yi is interpreted as a linear operator
from y* to X whose value at !/f is L !/f(Yi) . Xj' The inequality then shows

that IliPll" ~ 1, where IliPll" is defined as the supremum of IliP(v)ll/a(v),
vE X 0" Y.

Now define Q: X -> G by putting Qx = iP[P(x ® h)]. It is easily seen that
Q maps X into G, that Qg = g for all g E G, that Q is bounded, and that
IIQII ~ IIPII,,· Hence IIPII" ;;;d(G, X). By taking an infimum on P we obtain
A(G@" H, X 0" Y) ~ A(G, X). By symmetry we obtain A(G@" H,
X 0" Y) ~ A(H, Y). This establishes the desired inequality. I

COROLLARY 1. Let G, X, Y be Banach spaces, with G c X. Let a be a
reasonable norm on X ® Y. Then the relative projection constants obey

COROLLARY 2. If, in Theorem 1, A(H, Y) = 1 then (with a as above)

Now let Sand T be compact Hausdorff spaces. If G eX = C(S), Y =
C(T), and if f: is the smallest reasonable norm, then by a theorem of
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Grothendieck [14 J X@[ y = C(S X T) and G 0, C(T) = C(T, G). Also, it is
clear that

A(C(T), C(S X T)) = 1.

Hence, from the first Corollary,

A(G @f. C(T), C(S X T)) = A(G, C(S)).

Recall also that if G c C(S) and dim G < 00, then

leG, C(S)) = A(G).

The upper bound and the lower bound given in Theorem I can be attained
in nontrivial examples, as will be indicated in some of the following results.

An operator L is said to satisfy Daugavet's equation if III ~ L II = 1 + !I L II.
This is a property of compact operators in C 10, I I and L 1 [0, I [. See 15[ and
[1[.

LEMMA 1. Let K be a closed set which is not open in a compact
Hausdorff space S. Let R: C(S) -> C(K) be the restriction map, and let E be
any bounded linear extension map from C(K) to C(S). Then the projection
ER obeys "Daugavet's equation": 111- ER [I = 1 + II ER II = 1 + Ell·

Proof It is clear that III - ER II ~ 1 + II ER II. In order to prove that
III - ER II ? 1 + II ER II we distinguish two cases. First, suppose that II E I; > 1.
Let I <p < II E II. Then there exists y E C(K) such that II y!1 = 1 and
IIEyl1 >p. Select a E S such that l(e~v)(a)1 = Ile),!I. We can assume that
(Ey)(a) = IIEYII. By the Tietze Extension Theorem, there exists x E C(S)
such that Rx =y, x(a) = ~L and Ilxll = 1. Note that a E K since (E)')(a) > 1
while (Ey)(s) ~ 1 for s E K. Now we have

IIER~III?(ERx-x)(a)=IIEyll+ 1 >P+ I.

Since P was arbitrary between 1 and IIEII, IIER -III? IIEII + I. Observe that
in this part of the proof we did not use the hypothesis that K is not open.

In the second case, assume that IIEII = 1. There is a net s" E S\K such
that lim s" E K. By the Tietze Theorem, there exist functions x" E C(S) such
that Rx" = 1, x,,(s,,) = -1, and Ilx" II = 1. Then, by continuity of E I,

IIER -III? (ERx" - .\·o!(so! = (E1 )(s,,) + 1 -> 2. I

If K is a closed subset of a compact Hausdorff space S, the extension
constant of K in S is the number

rf(K, S) = inflilEll: E is a bounded linear extension map from C(K) to c(Sll.
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THEOREM 2. Let K and S be as above, and let J be the ideal in C(S) of
functions vanishing on K. Then

A(J, C(S)) = ) ~ + l1(K, S) if K is not open

if K is open.

Moreover, there is a minimal projection on J if and only if there is a minimal
extension map from C(K) to C(S).

Proof If P: C(S)-+J is a projection, then by Theorem 1 of [6], P=
I - ER for some bounded linear extension map. Here R is the restriction
map from C(S) to C(K). Now use the preceding Lemma. If K is not open
then IIPI\ = 1 +IIEII >1 + l1(K, S), whence A(J, C(S)) >1 + l1(K, S). On the
other hand, if an extension E is given then I - ER is a projection on J.
Hence IIEII = III - ER 11- 1>A(J, C(S)) - 1, whence l1(K, S) >
A(J, C(S)) - 1.

If K is open, a minimal extension is defined by (Ex)(s) = x(s) for s E K
and (Ex)(s) = 0 for s E S\K. A minimal projection is defined by P = I - ER.
Both P and E are of norm 1.

The proof is completed by noting that in these arguments P is minimal if
and only if E is minimal. I

COROLLARY 3. If K is a closed set in a metric space S, and if J is the
ideal in C(S) of functions vanishing on K, then A(J, C(S)) = 1 or 2
depending on whether K is open or not. In both cases a minimal projection
exists.

Proof By the Borsuk-Dugundji Theorem [14, p. 365], there exists a
linear extension map of norm 1. The result now follows from Theorem 2. I

COROLLARY 4. The set of all projection constants A(J, C(S)) for S a
compact Hausdorff space and J an ideal in C(S) is {I} U [2, 00].,

Proof By Corollary 3, we get values A = 1 or 2. By a theorem of
Benyamini [2] all numbers in [1, 00] occur as values of l1(K, S). By
Corollary 1, all numbers in [2, 00] occur as values of A(J, C(S)). It is
noteworthy that in Benyamini's theorem K can be fixed and taken to be the
unit cell in a nonseparable Hilbert space, with its weak topology. I

Remark. In Benyamini's example, the extension constants are exact. The
same is true for the examples of Corson and Lindenstrauss [4]. In all of
these cases, the corresponding ideals possess minimal projections.

THEOREM 3. Let Sand T be metric spaces. Let F 1 and F2 be closed sets
in Sand T, respectively, of which at least one has a nonempty boundary. Let
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G and H be the ideals corresponding to F I and F2 • Then maxjA(G, C(S)),
A(H, C(Tm = ),{G ®c H, C(S X T)}.

Proof By the preceding results, max{A(G, C(S)), A(H, C(Tm = 2. Now
G@ H is an ideal in C(S X T). Indeed, if x E C(S), Y E C(T). g E G. and
hE H then

(x @ )') . (g ® h) = (x . g) ® ()' . h).

Since G and H are ideals, x· g E G and )'. h E H. By linearity and
continuity we conclude that zu E G ® H if z E C(S X T) and u E G (8) H. By
Corollary 3, A(G @cH, C(S X T)) = 2. I

Remark. G ® H consists of all functions which vanish on

THEOREM 4. If G and H are finite-dimensional subspaces of C(S) and
C(T). respectively, then

A(G @,H. C(S) C(T)) = I,(G. C(S)) . A(H, C(T)).

Proof The steps in the proof are:

l(G @,H, C(S)@, C(T)) = A(G H. C(S X T)) (1)

=A(G H) (2)

=A(G)A(H) (3)

= A(G, C(S))· ),(H, C(T))' (4)

Step I uses the fact that C(S) ®, C(T) is isometric to C(S X T) if x @y is
identified with the function x(s) y(t). Steps 2 and 4 use a remark made
above. Step 3 utilizes a theorem from 1151, which asserts that for any two
finite-dimensional Banach spaces, A(E ® c F) = A(E) A(F). The proof of this
theorem utilizes results in 19]. I

THEOREM S. Let S be a compact metric space and G an ideal in C(S)
such that AIG, C(S) I= 2. Let H be any hyperplane in (co), Then

AIG @c H , C(S) @" (c) I < AI G, C(S) 1 AIH, (c) I· (I)

If AIH, (co)] = 1 then

AIG ®, H, C(S) @f (c) 1 = max{AIG, C(S) I, AIH. (c) 1 f. (2)
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Proof The space (c), of aU convergent sequences, is C(T) when T is the
set {O, 1/n}:;O~ l' By considering the composition of two projections we have
(and here we write (8) in place of (8)£)

A[G (8) H, C(S X T)] ~ A[G (8) H, G (8) (co)] A[G (8) (co), C(S X T)]. (3)

If G is the ideal of aU functions in C(S) which vanish on a certain closed set
K c S, then G (8) (co) is the ideal of all functions in C(S X T) which vanish
on F= (K X T)u (S X {O}). Since A[G, C(S)] = 2, K is not open, by
CoroUary 3, and hence F is not open. By CoroUary 3 again,

A[G (8) (co), C(S X T)] = 2. (4 )

By a theorem in [3], the relative projection constants of hyperplanes in (co)
lie in the interval 11,2). Hence

By the lemma which follows,

A[H, (c)] ~ 2.

By Corollary 1

Now by combining (3), (4), (7), and (5) we see that

A[G (8) H, C(S X T)] < 4.

By combining the hypothesis AIG, C(S)] = 2 with Eq. (6) we see that

A[G, C(S)] A[H, (c)] ~ 4.

Thus (1) is established. In order to prove (2), we assume

;.[H, (co)] = 1.

Since A[G, C(S)] = 2 ~ A[H, (c)], Theorem 1 implies that

(5)

(6)

(7)

(8)

(9)

(10)

A[G (8) H, C(S X T)] ~ max{A[ G, C(S)], A[H, (c)]} = AIH, (c)] ~ 2. (11)

On the other hand, Eqs. (3), (7), (10), and (4) yield

A[G(8)H,C(SXT)]~2. I

LEMMA 2. If H is a hyperplane in (co), then A[H, (c)] ~ 2.
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Proof Every projection P: (c) ---+t H is of the form

Px = x - <cp, x) Z - <l/f, x) w

with <cp, x) = lim x n ' l/f E (/1)' <cp, z) = <l/f, w) = I, <cp, w) = <l/f, z) = 0, H =
ker(l/f), Ill/fll= 1.

Given t: > 0, select an integer k such that Iwkl < f; and Zk > I ~ f:. Select
x E (c) such that Ilxll = I, lim x n = ~I, and X k = 1. Then

I(Pxhl = IXk + Zk ~ <l/f, x) wkl

~ 1 + I - t: -- c; = 2 ~ 2E.

Hence IIPII ~ IIPxl1 ~ 2 - 2f;. I

3.

In this section we study the projection constants of more complicated
subspaces in tensor-product spaces. If G c X and HeY are Banach spaces,
and if a is a reasonable norm, we can define a subspace W of X ®" Y by

W = a-closure in X ®" Y of (G ® Y) + (X ® H).

What can be learned about the relative projection constant of W as a
subspace of X@a Y?

THEOREM 6. Let a be a reasonable norm on X @ Y. If both G and Hare
complemented subspaces, then so is W, and

Jc(W, X@" Y)::;; A(G, X) + A(H, Y) + A(G, X) A(H, Y).

Proof Let P: X ---+t G and Q: Y ---+t H be projections. Define a
mapping L by

Here we use the Boolean sum operation defined by A CB B = A + B ~ AB.
This is a bounded linear operator on X ®" Y. It is routine to verify that L is
a projection onto W, and that IILII::;; IIPII + IIQII + IIPIIIIQII· I

THEOREM 7. Let A: X --; X and B: Y --; Y be linear operators satisfying
Daugavet's equation. Let a be a reasonable norm on X @ Y. Then the
operator

L = (A ®a I) (f) (I ®" B)
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on X@a Yalso satisfies Daugavet's equation, and

IILII = IIAII + IIBII + IIAIIIIBII·

375

Proof By verifying that the two operators have the same effect on all
dyads, x @ y, we obtain

1- L = (I - A) @a (I - B).

From this and elementary results from [13, p. 30] we have

1 + IILII ~ III -LII = III -AIIIII -BII
= (1 + IIA 11)(1 + IIBII)
= 1 + IIA II + IIBII + IIA IIIIBII·

This proves "half' of our equation. The reverse inequality follows at once
from the definition of L and the triangle inequality. I

THEOREM 8. Let Sand T be compact Hausdorff spaces, each containing
infinitely many points. Let G and H be finite-dimensional subspaces
containing the constants in C(S) and C(T), respectively. Then each
projection of C(S X T) onto G ® C(T) + C(S) @ H has norm at least 3.

Proof Let n = dim(G). Select SI ,..., sn in Sand gl ,... , gn E G so that
gi(S) = (ju- Then the operator L defined by Lx = L7~ I x(sJ gi is a projection
of C(S) onto G.

In the same way, let m = dim(H), and let M be a projection of C(T) onto
H of the form My = Lr=l yeti) hi'

The operator K = (I @ M) (j;) (L ® I) is a projection of C(S X T) onto the
subspace W = G ® C(T) + C(S) @ H. Hence for any w E W we have
w=Kw, or

n m

) ,~ \~

w(s,t = L... w(s/l't)g/l(s) + L...... w(s,t.Jhv(t)
~=1 v=l

n m

- L L w(s/l,t.,)g/l(s)hv(t).
/l= I v= 1

Note that since 1 E G and 1 E H, we have L 1 = 1, M1 = 1, and

(1)

(2)

Now let P be any projection of C(S X T) onto W. Let e > O. We will
prove that IIPII > 3 - e.

640(41(4-6



376 FRANCHETTI AND CHENEY

Since S is compact and infinite, there exists an w-accumulation point
a E S. (See Kelley [11, p. 138].) Likewise, T contains an w-accumulation
point r. Let c be any number greater than

til

2n max \' Igu(a)-gu(s)I+2 t11 max \' Ih,,(r)-h,,(t)I,
I~i~n #-1 l-;,,:j m I' 1

Let k be an integer so large that

k- 2 12k + 2kc IIPII + (m + n) c + clllPli 1< [;/2.

For i = 1,.... k define a neighborhood of a by

(3 )

Note that for i = 1,... , n we have Si E !I";. Select inductively points s", I ..... S,

so that

Si E !I"; for i = I.... , k.

(4)

(5)

In the same way select points t m +I"'" t k so that

m

(6)

\' Ih,(r)-h,(l)l<c2 i

/'-::-1

for j = I..... k. (7 )

By an argument using partitions of unity, there exist Xi E C(S) such that
Xi> 0, Xi(S) = 6u' and L~ I Xi = 1 for I::;; i, j::;; k. Similarly, we have
Yi E C(T) with Yj> 0, Yi t ) = 6u ' and .L~-l Yi = I. Define zij = Xi ® Yi
(1 ::;; i, j ::;; k). Elementary calculations show that

I!Zi;il = I

k

\'z=l@yEW
"""- lj J
i- I

k
\.
....... zij=xi@IEW
i-~ I

(l::;;i,j.v,!l~k)

(l~j~k)

(1 ::;; i::;; k) .

(8)

(9)

( 10)

(11 )
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Define wij=Pzij' From Eqs. (10) and (11) we have

II wijll <IIPII
k

)--, w.. =I@y.
~ l] J;=1

k

L wij=x;0 1
j=1

Define

377

(12)

(13 )

(14)

e;/.< = g/.«s;) - g/.«a)

ej" = h,,(tj) - h,,(r)

From Eqs. (5) and (7) we have

(1 <!J <n, 1 <i <k)

(1 <v<m, 1 <j <k).

(15 )

(16)

n

L Ie;/.< I<c2- i

/.<=1

From Eq. (1) we have

and
m

L lej"I<c2- j
•

l,=l

(17)

I Wij(Si' tj) = L g/.«Si) Wij(S/.<, tj) +I h,,(tj) Wij(Sp tJ
ij ij/.< ij ..

- I g/.«Si) h,,(tj) Wij(S/.<, t,,).
UIl V

(18)

The terms on the right side of Eq. (18) are now to be estimated from above.
We have, using Eqs. (15), (13), (12), (2), and (17),

L g/.«s;) wij(s/.<, tj) = L [g/.«a) + ei/.<l wij(s/.<, tj)
ij/.< ij/.<

<L g/.«a)(10Yj)(s/.<, tj) +L lei/.<IIIPII
j/.< ij/.<

= L g/.«a) + k IIPII L lei/.< I
j~ i~

=L 1 +kIIPIILc2- i

j i

= k+ kc IIPII.

Similarly, the second term is bounded from above by k + kc IIPII. The third
term in Eq. (7) is estimated as follows:
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- \ ' wJ su ' t.,) gu (SJ h" (t i )
ij~L'

=- \' Igu(a) + ciullh,.(r) +c/I'I WU(Su,tl')
UUI'

iful'

- - I _. \,,, - \ ' C I - \' ,. I' I \1' (S t)
- _ l',UU _ /'1" _ ui/...t '.II" U u~ ,.

f.1 ijur

<nc + mc + c2 II P!I-

When these estimates are combined, we have

\ ' WU(Si' t;) <2k + 2kc IIPli + (m + n) c + c 2 IIPII =cA.
u

It follows, with the help of Eq. (3), that

min wu(s" t i ) <k 2A <1';2.
1/

The proof is completed by the following calculation:

--1 < 1 - 2x; - 2Yj + 2x; .1'; ~ 1

III - 2xi - 2Yi + 2xi y;11 < 1

liP(! - 2xi - 2y; + 2xi .v;)11 <Ii PII

ill - 2x; - 2y; + 2wiFI~ IIPII

11 - 2x;(s;J - 2y;(t) + 2wi;(s;, t)1 < PII

1-3 + 2wu(s;, tJ ~ IIPII

3 - 2wu(s;. til ~ IIPII

3-f;~IIPil· I

COROLLARY S. If, in Theorem 8, G and H possess norm-I projections,
then AI W, C(S X T) 1= 3. Moreover, if P and Q are two norm-I projections.
then

(P@I)(f)(/@Q)

is a minimal projection onto W.
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A[W, C(S X T)] ~ 3.
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It is easy to verify that the Boolean sum projection has norm at most 3. I

EXAMPLE. The case W = C(S) + C(T) in Corollary 5 was first given by
Jameson and Pinkus [10]. Their methods have been used in the proof of
Theorem 8.

EXAMPLE. If S = T = [0, 1], and if G and H are spaces of piecewise
linear functions with prescribed knots, then A(W, C(S X T)) = 3.

Remark. In Theorem 8, if we drop the hypothesis that the subspaces G
and H contain constants but assume instead the existence of g E G and
h E H such that

II gil = Ilhll = 1, a = infg(s) > 0, fJ = inf h(t) > 0,

then each projection on W has norm at least 3afJ. The proof is almost the
same. The functions zij in the proof would be defined as gx; ® hYj' and at the
end of the proof we would have the inequality

THEOREM 9. Let G be a subspace of C(S) with relative projection
constant AI' Let H be a subspace offinite codimension in C(T) with relative
projection constant A2. Assume that T has no isolated points. Let W =
C(S) ® H + G ® C(T). Then the relative projection constant of W as a
subspace of C(S X T) does not exceed Al (A 2 - 1) +A2.

Proof Let P and Q be projections of C(S) and C(T) onto G and H,
respectively. Define V = ker(Q), Q2 = I - Q, and L = (P ® Q2) + (I ® Q).

It is easily proved that W= [G ® V] e:;J [C(S) ® HJ.
Now we prove that L maps C(S X T) into W. For any Z E C(S X T),

(P ® Q2) Z E G ® V and (I ® Q) z E C(S) ® H. Hence Lz E W.
Next we prove that Lw = w for any wE W. If g E G and v E V

then L(g ® v) = (Pg ® Q2V) + (Ig ® Qv) = (g ® v) + (g ® 0) = g ® v. By
linearity and continuity, Lz = z for all z E G ® V. If x E C(S) and h E H,
then L(x ® h) = (Px ® Q2h) + (Ix ® Qh) = (Px ® 0) + (x ® h) = x ® h. By
linearity and continuity, Lz = z for all z E G ® V. Hence Lw = w for all
wE W.

Since Q2 is compact, Daugavet's Theorem implies that ill - Q211 =

1 + II Q211· Thus II QII = 1 + II Q211·
From the definition of L we have at once IILII~IIPIIIIQ211+IIQII=
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II Pjl(11 QII - 1) + II QII. This number is then an upper bound for the projection
constant of W. By taking an infimum on P and Q we arrive at the upper
bound A,(A2'~ I) + A2· I

Open Problems

I. If G and H are finite-dimensional subspaces in C(S) and C( T). respec
tively, is the following equation necessarily true?

A(G ® C(T) + C(S) ® H. C(S X T)) = A(G) + A(H) + A(G) ),(H).

2. If G and H are as in Question L does there necessarily exist a
minimal projection of C(S X T) onto the subspace W = G ® C(T) T

C(S) ® H? (By Corollary 5. the answer is affirmative when A(G) =
A(H) = L)

3. Let G, H, W be as in Question 2. Assume that both Sand Tare
infinite sets and that max{A(G), A(H)\ > I. Does it necessarily follow that
A(W. C(S X T)) > 3?

4. In Theorem 8, can we drop the hypothesis that G and H contain the
constant functions?
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